Math 564: Real analysis and measure theory Lecture 15

Det let (x, B, m) be a measure space, where B == Meas, i.e. m is complete. A p-measurable function is said to be p-integrable if filly 200. In this case, Italy := If+ dy - If-dy. (Note Next | f| = f++f_.) Note $|f| = f_+ + f_-$ so $|f| dy = |f_+ dy + |f_- dy|$. In particular, $|f| dy \leq |f| dy$.

Remark. It is a complex-valued function, then Italy = [Ref dy + i] Imf dy.

We denote the space of p-integrable p-measurable functions by $L'(X,\mu) := L'(X,B,\mu)$.

Commonly $L'(X,\mu)$ denotes the quotient of the set of all integrable teachings by the equivalence relation f = g a.e. We will typically use $L'(X,\mu)$ as literally the space of all p-integrable functions, with the nuteritardicy that we could have used the quotient.

Difine a (pseudo) morm on L'(X, p) by IIII := JIFIAp. Call Mic the L'-norm.

Observation. L'(X, p) excipped with 11-11, is a (pecado) wormed vector space, i.e. torall f, g & L'(X, h), we have:

- (1) ||f||1 > 0 and ||f|| = 0 <=> f=0 a.e.

Proof. For (iii), note 1/f+g||, = S|f+g| dy & S|f|+|g| dy = S|f| dy + S(g| dy = ||f||, + ||g||,

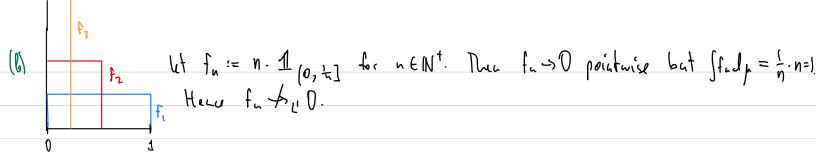
As always, a (pseudo) normed victor space is also a (pseudo) metric space by $d_{1}(f,g) := \|f-g\|_{1}.$

Thus, we say that a sequence $(f_a) \subseteq L'(K, \mu)$ were ges in L-norm to $f \in L'(K, \mu)$ it it converges in the (pseudo) metric d_1 , i.e. $f_a \rightarrow_{L'} P$ if $d_1(f_1, f_n) := \ f - f_n\ _1 \rightarrow 0$ as $n \rightarrow \infty$.
Poservation $f_n \rightarrow c_1 f$ implies (in particular) I for $d\mu \rightarrow \int f d\mu$. Proof. $ \int f d\mu - \int f u d\mu = \int (f - f u) d\mu \leq \int f - f u d\mu = f - f u _1 \rightarrow 0$.
Johanson. When μ is the counting measure on X , then $\ell^2(X) := 2^l(X)$, counting measure).
examples. (a) l'(IN) := absolutely summable sequences. Includ, for fel'(N) and production where on IN,
$\int f J \nu = \sum_{n \in I \setminus N} f(n) \qquad \text{(HW)}$ $\int_{0}^{\infty} \ f\ _{1} = \sum_{n \in I \setminus N} f(n) .$
b) Let $d \in \mathbb{N}$, so $d = \{0,1,,l-1\}$. What is $\ell'(d)$? It's just \mathbb{R}^d with the 1-no. $\ f\ _1 := \sum_{i < d} f(i) $.
The unit ball is -1 0 1
Pointwise v.s. L' wavegence.

Examples of disagreenent. All examples below are in L'(IR, S).

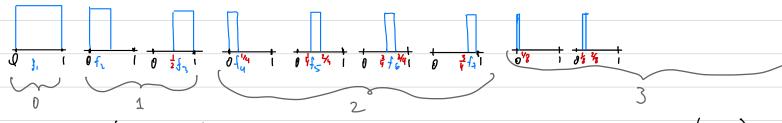
(a) Let $f_n := 1_{\{n_1, n_1\}}$ and f := 0.

from pointvise but $\int F_n dx = 1$ for all $u \in (N)$ while $\int f d\mu = 0$. Also $\|f_n - f_m\|_1 = 1$ for $u \neq m$.



(c) Here is a example of function but not at any point. $f_1 = \chi_{[0,1]}, f_2 = \chi_{[0,1/2]}, f_3 = \chi_{[1/2,1]}, f_4 = \chi_{[0,1/4]}, f_5 = \chi_{[1/4,1/2]},$

 $f_6 = \chi_{[1/2,3/4]}, f_7 = \chi_{[3/4,1]}, \text{ and in general, } f_n = \chi_{[j/2^k,(j+1)/2^k]} \text{ where }$ $n = 2^k + j$ with $0 \le j < 2^k$.



 $\|f_n-0\|_1 = \int f_n d\lambda = \frac{1}{2^k}$ if f_n belongs to the k^k group, so $f_n \rightarrow_{l^1} 0$. But $(f_n(k))$ diverges to ceal $x \in [0,1]$ beanse $(f_n(x))$ has so many 0 and 1.

We will discuss example (c) and its tix later, after introducing convergence in measure, but we can tix examples (a)-(b) now. Note that in (a)-(b), there is no integrable g>0 dominating all of the Iful. Indeed in (a) such a g has to be $z=1_{\{0,\infty\}}$, and in (b), $z=\max\{t_n\}$ $n \in \mathbb{R}$.

Dominated bourgeove Theorem (DCT). Let f_n , f be proven such to so with $f_n \rightarrow f$ a.e. If there is dominating $g \in L'(X, \mu)$, i.e. g > 0 and $|f_n| \leq g$ for all $n \in \mathbb{N}$, then $f_n, f \in L'(X, \mu)$ and $|f_n| \rightarrow f d\mu$ as $n \rightarrow \infty$.

In tack, fa > lif as no os.

Proof. The wordiscen |ful & g implies |fl & g a.e. here for, f & l.

Fatou applied to Iful gives ||f| dp & liminf | Iful dp. Other non-negative sequences are

g + fu and g-fu, and Fatou applied he each gives:

· ·
jgdp+Jfdp=Jg+fdp < himinf J(g+fa)dp= Jgdp+ liminf Jfadp.
gdp-ffdp=fg-fdp= limint fg-fndp=fgdp+limint-ffndp=fgdp-liminpffndp
So limsup frade < ft de liminf frade, so lin frade = ft de.
To get the L' conversence, apply (a) to $ f-f_n $. Indeed, $ f-f_n \leq f + f_n \leq 2g$ Hence by (ax), $ f-f_n = f-f_n d\mu \rightarrow \lim_{n \to \infty} f-f_n d\mu = \int 0 d\mu = 0$, so $f_n \rightarrow \iota f$.
L'as a (pseudo) metric space.
We malyze deux familier in l'as well as whether the l'métric is complète.
Proof. If f \(\begin{array}{c} \begin{array}{c} \left \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
Det. A measure space (X, B, μ) is said to be countably generated if Measy is separable as a pseudo metric space with $d_{\mu}(A, B) := \mu(A \Delta B)$, i.e. there exists a cfbl $G \subseteq Meas_{\mu}$ such that for each $M \in Meas_{\mu}$ and $E \supset F$ $A \in G$ with $d_{\mu}(M, A) < E$.
Proof. Follows from the uniqueness part of Carathéodors's theorem. Details done on the midden.
From the section for the section for the section of

Caution. The sourcese of the last proposition isn't true: there are ctbly generated (X, B, m) s.t. B isn't ctbly generated as a \(\tau\)-algebra.